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Abstract: Transportation agencies continue to pursue crash reduction. Initiatives include the design 
of safer facilities, promotion of safe behaviors, and assessments of collision risk as a precursor to the 
identifcation of proactive countermeasures. Collision risk assessment includes reliable prediction 
of vehicle trajectories. Unfortunately, in using traditional tracking equipment, such prediction can 
be impaired by occlusion. It has been suggested in recent literature that unmanned aerial vehicles 
(UAVs) can be deployed to address this issue successfully, given their wide visual feld and movement 
fexibility. This paper presents a methodology that integrates UAVs to track the movement of road 
users and to assess potential collisions at intersections. The proposed methodology includes an 
existing deep-learning-based algorithm to identify road users, extract trajectories, and calculate 
collision risk. The methodology was applied using a case study, and the results show that the 
methodology can provide benefcial information for the purpose of measuring and analyzing the 
infrastructure performance. Based on vehicle movements it observes, the UAV can communicate its 
collision risk to each vehicle so that the vehicle can undertake proactive driving decisions. Finally, 
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It has been prognosticated that unmanned aerial vehicles (UAVs) will play a vitalAccepted: 25 March 2022 
role in various application or context areas of transportation systems management. This is Published: 29 March 2022 
motivated by the success of UAVs in other sectors and domains including photography, 
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published maps and institutional affl- market for drone-enabled services has been valued at over 12.7 billion USD [1,2]. Moreover, 
iations. it is predicted that the industry will lead to the creation of more than 100,000 new jobs [3]. 

According to recent literature, seven million small UAVs have already been deployed 
in the airspace for commercial use in various domains including real estate, insurance, 
and agriculture. Copyright: © 2022 by the authors. 

In the transportation sector, engineers have investigated various ways in which UAV Licensee MDPI, Basel, Switzerland. 

This article is an open access article technology can be applied to enhance transportation operations, and drone-based solutions 
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creativecommons.org/licenses/by/ Federal Aviation Authority (FAA) to integrate small drones into the airspace by 2015 [6]. 
4.0/). That legislation increased the number of research efforts in this area. Most of this research 
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work focused on traffc fow analysis [7,8], vehicle detection [9], and highway infrastructure 
management [10]. 

Another UAV application area in transportation is the risk assessment of traffc 
safety [4]. The safety of public system users is considered a key indicator of the social 
pillar of sustainable development [11–13]. Public safety has been ranked in at least one 
previous study as the most important assessment indicator for infrastructure sustainabil-
ity [11]. The safety costs of crashes are immense, as families often experience great pain 
and suffering when they lose a loved one through an accident. Road traffc crashes cause 
1.3 million deaths annually [14] and over 20 million people suffer non-fatal injuries, with 
many incurring a disability as a result of their injury [14]. Traffc safety can extend beyond 
the social to the economic pillar of sustainable development, particularly when safety 
costs are converted into dollars using unit crash costs [15]. The global economic cost is 
immense: over 580 billion USD annually, costing most countries as much as 3% of their 
gross domestic product [16]. Efforts to address road traffc safety can be categorized by the 
factors that affect crashes: vehicle defect, driver incapacitation or inattention, road design 
and management, enforcement, driver education, and the environment (weather). Of these, 
only road management and design are under the direct control of the road agency. Road 
safety management includes traffc monitoring and crash risk assessment. Transportation 
agencies devote signifcant investment, and safety researchers go to great lengths to help 
reduce injuries and deaths associated with transportation systems by designing safer fa-
cilities, monitoring road traffc, and promoting safe driving behaviors. However, current 
research efforts in UAV-based assessment of traffc safety risk are rather limited. Kim and 
Chervonenkis studied the detection of emergency and abnormal traffc situations with a 
UAV artifcial vision system but acknowledged the limitations of the effcacy of their algo-
rithm [17]. Sharma et al. proposed a multi-UAV coordinated vehicular network to analyze 
driving behavior for improving traffc safety [18]. However, their work is only applicable in 
scenarios where more than two UAVs are available, which is hard to generalize at present. 

In the application area of traffc safety risk assessment, UAVs have two advantages: 
First, UAVs are portable, fexible, and robust. Traditional video data collection by land-
based cameras mounted on tall physical structures has several limitations including restric-
tions of the feld of view posed by the height of the camera and camera tilt angle. These 
impair accuracy in tracking the trajectories of the road vehicles being monitored. In addi-
tion, the time-consuming and labor-intensive installation process of mounting cameras on 
tall buildings prohibits the timely implementation and maintenance of ground-based traffc 
monitoring. UAVs offer a convenient means to address these limitations as it is possible to 
easily and quickly dispatch them to the site of interest and to adjust their spatial locations 
and camera positions. For automated vehicles, onboard sensors such as cameras and Lidar 
suffer from the problem of limited coverage range and occlusion. The vehicle is limited not 
only qualitatively (in terms of the precision and the richness of the delivered information) 
but also quantitatively (in terms of the range of its sensors) [19]. Onboard sensors often 
fail to detect persons and objects blocked by trees, vehicles, building corners, and other 
obstacles, and have diffculty sensing road users that are not in the same lane/direction 
as them. Under these conditions, drivers may not easily notice pedestrians in a timely 
manner and avoid collisions. Sensor fusion can address this problem to a limited extent [20]. 
A UAV overcomes these limitations because it has a global bird-eye view that generates 
comprehensive telemetric data on cyclists, pedestrians, and other mobile entities in the 
image recording. 

The second advantage of UAVs arises from the realization that it is still challenging 
to realize a large-scale ground-based vehicle-to-everything (V2X) network at the current 
time and in the near future. In a V2X network, the mobile entities represent nodes in 
an integrated connected network and thereby communicate directly with each other and 
with roadside infrastructure. The resulting information network is termed vehicle-to-
infrastructure (V2I), vehicle-to-vehicle (V2V), or vehicle-to-pedestrian (V2P) networks. If 
the communication is with a data center or information technology network, then the 
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network is a vehicle-to-network (V2N). A common term that combines all these types of 
communication, providing vehicle links with various recipients, is vehicle-to-everything 
(V2X). Cooperative V2X communications are intended to support a variety of use cases 
in risk detection including do-not-pass warning, forward collision warning, parking dis-
covery, queue-ahead warning, curve speed warning, optimal speed advisory, and other 
contexts that enhance traffc safety and effciency [21,22]. However, the major drawback of 
a V2X network is that its effectiveness hinges on the number of vehicles/facilities that are 
equipped with communication capabilities, because non-equipped vehicles are completely 
invisible to equipped vehicles. In addition, published research suggests that dedicated 
short-range communications or DSRC (a major data transfer technology used in V2X net-
works) is often plagued with issues of reliability, effciency, and productivity, particularly 
at high traffc volumes [23]. Moreover, security issues including dynamic network typol-
ogy, attack prevention, and network scalability may impair the effcacy of complex V2X 
networks [24]. Further, there is the issue of interoperability: the multiplicity of principal 
stakeholders—automotive manufacturers, public transport providers, municipalities, and 
transport authorities—makes it diffcult to achieve fully connected systems. For these rea-
sons, full and effective deployment of V2X systems may not be realized in the near future. 
To address this gap, UAVs could potentially play a critical role by facilitating communica-
tions between connected vehicles and other vehicles, infrastructure, etc., without requiring 
that all these neighbors be connected to each other. In addition, the fexible nature of UAV 
operations is such that they can facilitate macroscopic and microscopic characterization and 
analysis of the traffc stream. UAV connectivity to vehicles, infrastructure, and pedestrians 
can enable intelligent and real-time communications. Having this capability is useful for 
safe and effcient connected and autonomous vehicle (CAV) operations. By virtue of their 
accuracy, complexity, range, and availability of the traffc data they generally capture, 
UAVs have opened up new opportunities in the feld of traffc monitoring, management, 
and analyses. 

The potential benefts of UAV in intersection safety management are underscored 
by the fact that intersection safety is a top priority at the local, state, and national levels. 
According to Federal Highway Administration (FHWA), over 50 percent of all fatal and 
injury crashes occur at or near intersections [25]. Due to the complexity of mixed traffc 
fows at intersections, each of these accidents often involves multiple vehicles, pedestrians, 
motorcycles, and trucks. Consequently, transportation agencies including the National 
Highway Transportation Safety Administration, Federal Highway Administration, and 
Institute of Transportation Engineers continue to support the development of safety ini-
tiatives to reduce collision risk at intersections. The FHWA, in particular, has sponsored 
the investigation of crash causation factors and evaluating alternative intersection designs 
that facilitate the safe movement of pedestrians and bicyclists. Recently, the agency has 
reiterated the encouragement of edge computing platforms to facilitate real-time actions 
(detection of traffc events and subsequent decision-making) to enhance safe operations at 
signal-controlled intersections [25]. 

Against this background, this paper investigates the potential utilization of UAVs for 
assessing collision risk at intersections. The objectives of the paper are twofold: (1) propose 
a framework that uses data obtained from UAV and V2X connectivity to track the move-
ment of road users and to assess potential collisions at intersections, and (2) demonstrate 
the framework using a case study involving an intersection. The proposed framework, 
facilitated using machine-learning models, is intended to enhance the extraction and analy-
sis of reliable trajectory data and detection of collision risk. The proposed framework can 
help traffc engineers to assess safety conditions at intersections, recognize root causes of 
intersection safety hazards (as a precursor to identifying appropriate safety countermea-
sures), and design intersections for improvement not only in the current era but also in the 
prospective era of CAVs. 
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The rest of the paper is organized as follows: Section 2 reviews related work and 
Section 3 introduces the proposed framework. A case study is presented in Section 4. 
Section 5 provides overall concluding remarks of this work. 

2. Related Work 

In previous research, UAV applications in road safety management have been investi-
gated. A few researchers have proposed frameworks that use photographs from drones to 
reconstruct accident scenes. Others have compared the use of UAVs to other alternatives for 
traffc monitoring including manned drones, helicopters, and road patrol vehicles [26] and 
have carried out multiple criteria analyses to identify the most cost-effective monitoring 
platform. They found that UAV has a lower cost compared to helicopters and is quicker to 
deploy compared to road patrols, and concluded that UAV is the best option for incident 
management. As UAV technology continues to develop, research attention is turning 
towards the processing of drone images captured at different shooting angles and altitudes 
and improving the quality of reconstructed scenes. For example, researchers have proposed 
low-cost methods that use UAV photogrammetry and other techniques to reconstruct 
traffc accident scenes [27] and assessment of reconstruction quality of the images using the 
concepts of peak signal-to-noise ratio and structural similarity [28]. Relatively few research 
efforts have addressed the UAV applications in safety risk assessment. Risk assessment 
entails a detailed analysis of vehicle trajectories extracted from UAV-based videos. From the 
trajectories, potential conficts, high-risk lanes, and risky maneuvers can be identifed and 
crash occurrence could be predicted. In [29], authors developed a framework to investigate 
crash risk at freeway interchange merging areas using data exported from a UAV and 
incorporated a driver behavior model to identify the factors of risky driving behavior. 
Other researchers have explored UAV applications in smart transportation and have used 
trajectories from the optical fow model for traffc parameter extraction, driver behavior 
analysis, and congestion detection [30]. 

The task of accurately extracting trajectories is one of the most challenging aspects of 
the UAV-based risk assessment process. Such diffculty is exacerbated by the heterogeneity 
that often characterizes the surveillance scene. For example, the scene at an intersection 
may be densely crowded and consist of objects that vary in their nature and features, and 
the presence of a substantial number of object classes (vehicles, pedestrians, or bicycles) 
with multiple interactions and behaviors. In addition, the recognition of specifc activities 
can be challenging. Manual monitoring and review of large amounts of video data may be 
cumbersome and impractical. Therefore, accurate extraction of trajectories from videos is 
one of the most critical as well as challenging requirements for video-based applications. 
The task of tracking multiple trajectories is termed multi-object tracking (MOT). In MOT 
tasks, challenges that are encountered include occlusion, initialization and termination of 
tracks, the similarity of appearance, and interactions among different objects. In recent 
years, the rapid development of convolutional neural network deep-learning-based MOT 
algorithms with high computing speed and accuracy have been proposed to facilitate the 
task. Most existing MOT research can be placed into one of two categories: detection-based 
tracking (DBT) and detection-free tracking (DFT). The difference between them is that 
DFT performs detection, matching objects with trajectories, and tracking simultaneously. 
DBT, on the other hand, conducts detection and tracking tasks separately: objects are frst 
detected and then linked to identify the trajectories. In recent tracking studies [31,32], 
benchmarks have been established for DBT models. Bose et al. proposed a framework 
for detecting and tracking multiple interacting objects with due cognizance of fragmen-
tation [31]. In their experiments, 89 out of 94 moving objects were correctly tracked and 
762 merges and splits were detected. DFT models, on the other hand, are free of pre-trained 
object detectors but require manual initialization of a fxed number of objects in the frst 
frame [33,34]. It has been realized by at least one researcher [35] that simultaneous detection 
and tracking can be carried out using a detection model. DFT models attract signifcant 
research attention because they can address disappearing objects or emerging objects in the 
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image frame. DBT is generally more time-consuming compared to DFT because the total 
time used for the DBT algorithm is the sum of time spent by two components. 

In the literature, the assessment of collision risk at road intersections has been identifed 
as a critical task yet to be addressed in the domain of transportation safety research [36–39]. 
The American National Standard [40] listed intersections as a locational context that is 
due for critical safety evaluation. The Standard defnes an intersection as an area which 
“(a) contains a crossing or connection of two or more roadways not classifed as driveway 
access and (b) is embraced within the prolongation of the lateral curb lines or, if none, 
the lateral boundary lines of the roadways”. If the distance along a road between two 
areas meeting the two criteria is less than 33 ft (10 m), then both areas and the connecting 
roadway are considered to be parts of a single intersection. Collision risk indicators are 
developed to quantify the potential risk for road users. Quantitative risk indicators include 
time-to-collision (TTC), time-to-brake (TTB), and time-to-steer (TTS), of which TTC is the 
most widely adopted. TTC is calculated as the duration between a reference timestamp 
and the time of the frst impact between the vehicles if the concerned vehicles maintain 
their current speed vectors. In recent research, risk models that comprehensively con-
sider vehicle motion/location, driver behavior, and road geometry information have been 
proposed [41–43]. In an effort to describe collision risks more reliably, researchers have 
proposed a number of metrics—TTC confdence levels, duration of the risk, confguration 
of the risk apart from the TTC value—as risk indicators to support driver decisions [19]. 
Similarly, a collision map with options for the ego vehicle to prevent or mitigate collision 
was also proposed by [44]. The review of literature also showed that the development of 
V2X network and cloud computing have enabled cooperative collision avoidance (CCA) 
and therefore brought the risk detection tasks to a more real-time and proactive level. 
According to CCA-related studies, CCA systems use vehicle-to-vehicle (V2V) communica-
tions [45–47] or vehicle-to-infrastructure (V2I) communications [45] to detect the possibility 
of accidents and to achieve cooperative collision avoidance. Studies have shown that in 
advanced CCA systems, vulnerable road users (VRU) can be recognized and warning 
messages sent accordingly. The US Department of Transportation (DOT) estimates that 
V2V can potentially mitigate as much as 82% of all crashes in the country that involve 
unimpaired drivers, thereby prospectively preventing thousands of fatalities and billions 
of dollars in property damage and economic loss [48]. Gelbal et al. introduced a pedestrian 
collision warning and avoidance system for road vehicles based on V2X communication 
signals from pedestrians’ smartphone apps that are used to detect them and their locations 
using dedicated short-range communications (DSRC) [20]. Du et al. incorporated a Model 
Predictive Control approach in V2V communication systems and proposed a method 
for autonomous driving vehicles to avoid crashes in a mixed traffc stream that contains 
aggressive human drivers exhibiting errant lane-changing behavior [42]. 

3. Methodology 

The proposed framework consists of three main stages (Figure 1). The frst stage 
addresses trajectory extraction and the second stage performs risk assessment. In the frst 
stage, the CenterTrack model [35], trained using UAV-captured traffc videos, is applied 
in order to obtain real-time and historical trajectories of each road user. In the second and 
third stages, the crash risk associated with each road user is determined. The scale of the 
frames and speed of every road user are frst calculated using results from the frst stage. 
The crash risk between each pair of tracked road users is then estimated by calculating the 
time-to-collision (TTC) between them. The implementation details and further discussion 
are provided in subsequent subsections of this section of the paper. 
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3.1. Trajectory Tracking 

Accurate trajectory tracking is a key requirement for the effective generation of profles. 
Given an input video sequence, the multi-object tracking (MOT) task is required to locate 
multiple objects, maintain their identities, and yield their individual trajectories. In our 
scenario, the objects refer to road users (vehicles, motor vehicles, and pedestrians) at 
the intersection where the volume of objects is typically large. In addition, given the 
dynamic traffc pattern, we require an MOT model to capture the trajectories of road 
users quickly and accurately. Recent literature suggests that convolutional neural network 
(CNN)-based multi object tracking algorithms are promising approaches for doing this. 
As discussed in the previous section of this paper, CNN-based tracking algorithms fall 
into two categories: detection-based tracking (DBT) and detection-free tracking (DFT). In 
this paper, we recognize that traffc monitoring is inherently time-sensitive, and therefore, 
we use a DFT algorithm which is faster than the DBT algorithm. Zhou et al. developed 
a CenterTrack model, which is a simultaneous detection and tracking algorithm that is 
simple, fast, and accurate [35] and therefore, is a perfect ft for our case study demonstration. 
Therefore, we developed our method as a further enhancement of the CenterTrack model. 
CenterTrack identifes each object through its center point and then regresses to the height 
and width of the object’s bounding box. Specifcally, it produces a low-resolution heatmap 
and a size map. In addition to the original output channels in CenterTrack, we introduce 
herein a new channel for object classifcation purposes. Figure 2 presents the structure of 
the tracking model. At time t, we are given an image of the current frame and the previous 
frame, as well as the heatmap of tracked objects from the previous frame. The heatmap 
is formed by the distribution of the confdence score of object centers. First, the heatmap 
and frames go through the convolutional layers separately and then are concatenated to 
feed into another sequence of convolutional layers. The output from the entire network 
includes object classifcation, displacement prediction, height and width of bounding boxes, 
and a heatmap for the current frame. The original loss function of Centertrack consists 
of three components: focal loss, size, and local location. The focal loss, which is the loss 
of object detection (Lk), is presented in Equation (1). In Equation (1), Yxyc(=0,1) indicates 
the ground truth heatmap of annotated objects. Yb xyc is the detected heatmap and N is the 
number of objects. α, β are hyperparameters for the focal loss. Compared to cross-entropy 
loss, the focal loss is an improved version of object detection by assigning greater weight to 
diffcult-to-classify or easily misclassifed entities. Therefore, the focal loss is more suitable 
for detection tasks under complex contexts such as drone-captured intersection images, 
where the “effective detection region” (i.e., regions occupied by road users) is relatively 
small compared to the background. The size prediction is learned by the loss function 
(Lsize ) in Equation (2) and is supervised at the center locations. In Equation (2), si is the 
bounding box size of the i-th object at location Pi and Sb pi 

is the detected size. The offset 
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calculated as the displacement of object centers is learned using the loss function (Lo f f ) 
(t−1) (t)shown as Equation (3), where pi − pi captures the difference in location of the object 

(t) (t−1)in the current frame p and the previous frame p and D̂ 
(t) denotes the displacement i i pi 

at time t at location Pi learned by the model.⎧ � �α � � 
1 ⎨ 1 − Yb xyc log Yb xyc i f Yxyc = 1 

= � �α � � (1)Lk N ∑xyc⎩ � �β b1 − Yxyc Yxyc log 1 − Yb xyc Otherwise 

N 
Lsize = 

N 
1 

∑ Sb pi 
− si (2)i=1 

N � �1 (t−1) (t)Lo f f = ∑ D̂ 
p(t) − p − p (3)i iN i=1 i 

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 21 
 

offset calculated as the displacement of object centers is learned using the loss function 

(𝐿𝑜𝑓𝑓) shown as Equation (3), where 𝐩𝑖
(𝑡−1)

− 𝐩𝑖
(𝑡)

 captures the difference in location of the 

object in the current frame 𝐩𝑖
(𝑡)

 and the previous frame 𝐩𝑖
(𝑡−1)

 and 𝐷̂
𝐩𝑖

(𝑡) denotes the dis-

placement at time t at location 𝑃𝑖 learned by the model. 

𝐿𝑘 =
1

𝑁
∑𝑥𝑦𝑐   {

(1 − 𝑌̂𝑥𝑦𝑐)
𝛼

log(𝑌̂𝑥𝑦𝑐)   𝑖𝑓 𝑌𝑥𝑦𝑐 = 1

(1 − 𝑌𝑥𝑦𝑐)
𝛽

(𝑌̂𝑥𝑦𝑐)
𝛼

log(1 − 𝑌̂𝑥𝑦𝑐)   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

𝐿size =
1

𝑁
∑𝑖=1

𝑁  |𝑆̂𝐩𝑖
− 𝐬𝑖| (2) 

𝐿𝑜𝑓𝑓 =
1

𝑁
∑  

𝑁

𝑖=1

|𝐷̂
𝐩𝑖

(𝑡) − (𝐩𝑖
(𝑡−1)

− 𝐩𝑖
(𝑡)

)| (3) 

 

Figure 2. Structure of the CenterTrack model. 

3.2. Data Preparation and Risk Assessment 

The crash risk of road users can be evaluated using the trajectory extracted at the 

previous stage of the methodology. Table 1 presents a summarized set of data (and their 

notations) used for the risk assessment. First, the data are prepared to obtain the scale of 

frames and speed of road users. We assume that the length of a typical vehicle is 4 m, and 

the width is 1.7 m. A scale can be obtained by aligning detection boxes of vehicles in the 

video sequence with real dimensions of vehicles. The speed of road users is calculated 

using Equation (4) below: 

𝑣(𝑡) =
√(𝑥𝑡 − 𝑥𝑡−∆𝑡

)
2

+ (𝑦𝑡 − 𝑦𝑡−∆𝑡
)

2

∆𝑡
× 𝑠𝑐𝑎𝑙𝑒 

(4) 

where ∆𝑡 is the video frame frequency and the unit of speed is meters/second. 

  

Figure 2. Structure of the CenterTrack model. 

3.2. Data Preparation and Risk Assessment 

The crash risk of road users can be evaluated using the trajectory extracted at the 
previous stage of the methodology. Table 1 presents a summarized set of data (and their 
notations) used for the risk assessment. First, the data are prepared to obtain the scale of 
frames and speed of road users. We assume that the length of a typical vehicle is 4 m, and 
the width is 1.7 m. A scale can be obtained by aligning detection boxes of vehicles in the 
video sequence with real dimensions of vehicles. The speed of road users is calculated 
using Equation (4) below: q 

(xt − xt−Δt )
2 + (yt − yt−Δt )

2 

v(t) = × scale (4)
Δt 

where Δt is the video frame frequency and the unit of speed is meters/second. 
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Table 1. Data for risk assessment. 

Data Notes 

Scale Match the video to real-world scales 
Categories Log all categories of different road users 

xt, yt Location of the center of the bounding box at time t 
Ht Height of the center of the bounding box at time t 
Wt Width of the center of the bounding box at time t 
Vt The speed at time t 
Ct Category of the detected road user at time t 

After the data preparation, data from each road user are assigned a unique ID. The data 
include the center of its bounding box, height and width of its bounding box, speed, and the 
category it belongs to in every frame. We adopted a widely used risk assessment parameter, 
the time-to-collision (TTC), as the measure of risk. TTC was frst developed in 1972 [49]. 
The initial defnition of TTC is “the time required for two vehicles to collide if they continue 
at their present speed and on the same path”. A lower TTC value corresponds to higher 
confict severities and a TTC smaller than 2.5 s is typically taken as critical [50]. Hence, TTC 
is generally perceived to be a primary and effcient measure in traffc safety assessment. In 
this paper, for any two objects (e.g., object 1 and object 2 in Figure 3), the TTC is calculated 
using Equations (5)–(9) below: 

Relative speed, vrelaˆ = v̂2 − v̂1 (5) q 
|vrela| = v1

2 + v22 − 2|v1||v2|cosα (6) q 
Distance, l = (x2 − x1)

2 + (y2 − y1)
2 (7) 

Projected speed, ˆ = (8)vprojected vrelaˆ × cosθ 

l
TTC, ttc = (9)|vrela| 
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From the proposed model, the TTC value of each pair of all tracked road users can 
be easily achieved and road safety can be assessed at both macroscopic and microscopic 
levels. From the macroscopic perspective, a risk profle of the studied area at every time 
step can be established by identifying road users that exhibit the critical TTC. From the 
microscopic perspective, an individual road user is informed of their TTC relative to 
neighboring entities so that the road user can undertake an appropriate maneuver to 
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enhance their safety. The case study section of this paper presents a detailed demonstration 
of the assessment. 

3.3. Performance Evaluation 

The success of the proposed framework is determined by how many risky TTCs it 
can correctly detect, which in turn depends on the accuracy of the trajectory tracking 
task. The TTC ground truth is obtained by feeding the true trajectory data into the Risk 
Assessment module. To better ft the UAV scenario, when training the trajectory tracking 
model, we used video clips provided by VisDrone [51], which consist of 56 video clips 
with 24,198 frames captured by UAVs. The trained model is tested on a test set containing 
16 video clips with 6322 frames. In this paper, we consider six categories of road users: 
pedestrian, bicycle, car, van, truck, bus, and motorcycle. We used Multi-Object Track-
ing Accuracy (MOTA) to evaluate the tracking results [52]. MOTA is calculated using 
Equation (10) below: 

∑ t(mt + f pt + mmet)MOTA = 1 − (10)
∑ tgtt 

where mt, f pt, mmet, and gtt are the number of misses, false positives, mismatches, and 
ground truth trajectories (road user trajectories), respectively, at time t. As shown in Table 2, 
the tracking algorithm gives 64.89 MOTA on the training set and 63.12 MOTA on the 
testing set. 

Table 2. Evaluation of the trajectory tracking model. 

Dataset MOTA 

Train set 64.89 
Test set 63.12 

In using the extracted trajectories to produce risk profles of a studied area, the true 
positive rate and false negative rate were logged as an evaluation matrix. Using 2.5 s 
as a threshold, the TTC between each pair of road users was labeled as safe vs. risky. 
A true positive means both ground truth and our proposed framework detect the TTC 
between each pair of road users as risky. A false positive means our proposed framework 
indicates a TTC as risky while the ground truth shows it is safe. A true negative refers to 
situations where both ground truth and our proposed framework indicate that the TTC is 
safe. Similarly, a false negative means that our proposed framework gives a safe TTC while 
the TTC is risky in the ground truth dataset. As shown in Table 3, our model yields a true 
positive rate of 80% and a false negative rate of 31%. For all the detected TTCs, 78.2% of the 
model results fall into the ground-truth categories of risky or safe designations. 

Table 3. Evaluation of the risk assessment model. 

Evaluation Metric Value 

Accuracy 1 78.2% 
True positive rate 80% 
False positive rate 31% 

1 Accuracy = (number of true positive cases + number of true negative cases)/total number of cases. 

4. Case Study and Analysis 

To illustrate the analysis framework of the UAV-based risk assessment proposed 
in the sections above, a case study was conducted using drone images captured at an 
intersection in Tianjin, China. As shown in Figure 4, this is a 4-way intersection. The video 
data were provided by an open-source dataset [51] that includes intersection videos taken 
under various conditions including sunny weather, good light, and no electromagnetic 
interference (which could infuence the stability of the video pictures at a vertical angle). 
The movements and interactions between vehicles in this intersection were captured at a 
frame frequency of 30 fps. 
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4.1. Road Traffc Performance Characterization 

The UAV-captured data, after being processed by deep-learning networks, offer nu-
merous applications to support road monitoring and management. As a proof of concept, 
we present here how these fndings could be applied to measure the performance of 
the study area in terms of the safety and effciency of traffc movement. Transportation 
performance measures, sometimes referred to as measures of effectiveness (MOEs), are 
quantitative estimates on the performance of a transportation facility, and include the level 
of service, crash frequency, and travel time [53,54]. Proper evaluation of transportation 
facility performance has always been supported by legislation [55]. At the current time, 
cities are growing at an unparalleled pace, particularly in Asia and South America. As such, 
there is a growing demand for information on traffc growth trends to support general 
transportation administration and management, and the development and evaluation of 
road safety policies. In this context, the proposed UAV framework can be benefcial to road 
and traffc managers because it is capable of generating large amounts of traffc data in 
real time. 

The capability of the developed framework to generate traffc performance data is due 
to the inherent structure of the deep-learning network used in the framework: the detection 
results help identify the composition of road users and the tracking results help measure 
the speeds and directions of the road users. In the studied area (Figure 5), the intersection 
occupants are two-wheelers (36.6%), vans (2.3%), bicycles (10.1%), pedestrians (14%), and 
automobiles (36%). 

From the results of the tracking analysis of the UAV data, the speeds of road users 
of different categories can be presented (Figure 6). The tracking analysis excludes the 
phase where road users wait for green traffc light signals. Of the road users that pass 
through the intersection, motor vehicles are those that show highest speeds as expected. 
In addition, the speed range for the motor vehicles is widest compared to all the other 
road users. In contrast, the travel speed of pedestrians and vans are relatively stable. 
This information could be used to generate several useful measures of the intersection 
performance. For example, the travel time index (TTI), which is travel time divided by 
the free-fow travel time, can be calculated [56]. A TTI value of 1.00 indicates travel at the 
free-fow speed, while a TTI value of 2.00 indicates travel that is twice as long, compared 
to free-fow conditions. The vehicle speed outcomes can be compared to target or design 
speeds to assess relative beneft. In analyzing the traffc performance of the study area, it is 
desirable to incorporate local input values; however, this is outside the scope of this study. 
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4.2. Risk Profles 

At each time step, the trajectories of all studied road users were tracked using the 
deep-learning-based model developed in this study. Then, the crash risk for every pair of 
road users was estimated using the TTC equation provided as Equations (5)–(9). It may be 
noted that only positive TTCs are considered in this study and TTCs smaller than 2.5 s are 
labeled as risky. For any road user, if the minimum correlated TTC is risky, the road user is 
labeled “risky”. Figure 7 presents a series of consecutive macroscopic risk profles where 
risky road users are highlighted by their bounding box; the number indicated at the top of 
the box is the value of the most critical TTC value correlated to the road user in the box. 
As indicated by Figure 7, dynamic variation of the intersection risk profle is captured by 
videos. In addition to vehicles, pedestrians and bicycles that are risky are also identifed 
by the proposed framework. The microscopic risk profles can be obtained by extracting 
information for an individual road user. Figure 8 presents the risk profle of an individual 
vehicle and highlights the neighbors that have a “risky” level of TTC with respect to the 
individual vehicle in question. The individual vehicle is indicated by a red circle in the 
fgure. Other road users that are risky are marked with blue boxes. The number indicated 
above each box is the TTC value between the road user in the box and the studied vehicle. 
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The benefts of such risk profles are twofold. First, when transmitted (by the UAV) to 
the individual road user, the microscopic risk profle can help the road user become aware 
of potential crashes in its surroundings. This is considered particularly important in the 
prospective era of autonomous vehicles (AVs) because the AV’s in-vehicle detectors includ-
ing cameras and Lidar may fail to identify all potential crashes or hazardous situations 
due to their narrow detection range and detection challenges. As such, the UAV not only 
serves as a robust source of information relating to a broad view of the surroundings and 
wider spatial characterization of the environment, but also makes available accurate data 
regarding potential risks. Second, the macroscopic risk profle provided by the UAV can 
provide useful insights to urban planners and transportation managers in their efforts to 
assess the safety level of an intersection, identify risky road users, and analyze reasons 
for potential collisions. If there exists a centralized control platform, then the platform 
could convey real-time warning messages to connected risky road users with appropriate 
collision-avoiding maneuver suggestions to mitigate collision. The risk profle patterns can 
be identifed by summarizing data from the same intersection. In the studied area, 72% of 
potential collisions are formed between vehicles. In the remaining 28% of potential colli-
sions (Figure 9), 40% are caused by pedestrians and vehicles and 30% of collisions happen 
between trucks and cars. The road agency overseeing the operations of the intersection may 
be interested in investigating the reasons why risk occurs so often between pedestrians and 
cars, and therefore, can recommend the construction of pedestrian-dedicated facilities to 
mitigate these problems. Figure 10 logged all locations where “risky” road user interactions 
are prevalent. It can be observed that the most critical potential crashes occurred in the 
upper right corner of the intersection. This may be due to a large number of bicycles and 
pedestrians who typically occupy that area, where they share the lane with vehicles. As a 
result, it is diffcult for vehicles to undertake safe turning maneuvers. Intersection designers 
can also use the results of such analysis as a basis to carry out intersection improvements. 

The results of this study are consistent with a national effort to assess safety risks at 
road sections and intersections. In 2009, the US Federal Highway Administration (FHWA) 
conducted a program to address pedestrian safety concerns by developing and researching 
effective tools and countermeasures and by coordinating projects, plans, and discussions 
with State and local offcials and safety advocates [56]. The initiative has been echoed by 
efforts at the local level for road administration. For example, the Chicago Department of 
Transportation completed an extensive pedestrian crash analysis to identify specifc crash 
factors and characteristics including when and where pedestrian crashes occurred, road 
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user categories that were involved in pedestrian crashes, and the contributing factors re-
lated to the pedestrian crash. The report advocated the construction of marked crosswalks, 
in-road state stops for pedestrians’ signs, and pedestrian refuge islands at roads and inter-
sections considered to be risky [57]. In addition, the 2012 Chicago Pedestrian Plan identifed 
opportunities and ongoing plans to increase the safety of the city’s pedestrians. Similarly, 
the City of Austin developed a Pedestrian Safety Action Plan based on a comprehensive 
analysis of intersections considered dangerous [58]. The risk profles extracted by UAVs, as 
demonstrated in this paper, would facilitate such programs and enable them to be more 
effcient and focused. As depicted in Figure 11, the information exchange between UAVs, 
connected vehicles, and transportation agencies facilitates the dissemination of microscopic 
and macroscopic risk profles, and helps identify appropriate safety countermeasures. 
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4.3. Risk Prediction 

In assessing the risk associated with an intersection, it is also of interest to predict the 
risk of a vehicle at subsequent time steps. To predict such future crash risk, we deployed a 
Random Forest classifer, a supervised learning algorithm. Random Forests create decision 
trees on randomly selected data samples, obtain predictions from each tree and select the 
best solution through voting. The major advantage of Random Forest is that it provides 
an indicator of the feature importance which offers insights on features that are infuential 
in distinguishing the data samples. Such information makes the model interpretable and 
facilitates the pre-emptive identifcation (before a crash occurs) of vehicles associated with 
“critical” interactions so that risk could be mitigated in a proactive manner. It may be 
noted that only cars are included as studied objects. This is because the moving pattern 
of car–other pairs (that is, cars and other road users) is different. The features fed into the 
random forest model include speed, location, safety condition of the studied vehicle and its 
neighbors, together with TTC and distance between them in the fve consecutive previous 
time steps. The output of the classifer is either “safe” or “risky”. “Safe” means that for 
the studied vehicle, the smallest predicted TTC at the next time step is greater than 2.5 s, 
and “risky” means the smallest predicted TTC is less than 2.5 s. From the Random Forest 
model, we obtain the importance of different features regarding future risk prediction, 
which is calculated by a Gini Importance value that sums over the number of splits (across 
all trees) that include the feature, proportionally to the number of samples it splits. A higher 
Gini Importance value indicates the feature is more likely to be the essential difference 
between different categories. Figure 12 presents the top 5 important features and their 
levels of relative importance. A “dangerous road user” refers to the neighbor with the 
smallest TTC with respect to the studied vehicle in the last time step. Features with higher 
importance contribute more when predicting risky vehicles, indicating that we can observe 
these features to predict the future potential risk of a vehicle. The threshold of these features 
could also be extracted from the Random Forest classifer. The threshold values are not 
discussed in this paper because the threshold values are very specifc to the studied area 
and the time of capturing the video, and cannot be generalized. According to the Random 
Forest classifer, the vehicle speeds in the previous time steps are most related to its future 
safety condition. The status of the vehicle’s neighbors, particularly the location and speed 
of its dangerous neighbor, also plays a signifcant role in determining a vehicle’s future 
safety condition. 
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In practice, warning messages could be generated based on these results and sent 
to the vehicles concerned to remind them to be aware of the imminent danger of traffc 
collision. For example, when the speed of a vehicle exceeds the speed threshold specifed 
in the classifer, the vehicle could be alerted to reduce speed. Over the past decade, there 
has been an upsurge in the availability of collision-warning systems in cars sold in the 
US [59]. The benefts of pre-collision warning systems have been verifed by the Insurance 
Institute for Highway Safety (IIHS) whose data suggest that collision warning reduces 
rear-end accidents by 27 percent [60]. Wider adoption of collision warning systems could 
be anticipated considering the rapid advancement of autonomous driving technologies. 
Currently, the collision-warning systems are mainly powered by on-vehicle ranging sensors 
(e.g., cameras and radar) and are limited to forward collision warning (FCW), pedestrian 
detection system (PDS), and lane departure warning (LDW). Vukadinovic et al. proved that 
cellular-V2X systems increased reliability of communication performance under increasing 
congestion on the wireless channel but the UAV-based V2X systems have not attracted 
much attention in safety analysis [61]. The UAV-based collision warning system addresses 
the inadequacy of onboard sensors and therefore opens up new potential for collision 
avoidance systems for autonomous driving cars. It should be noticed that the design of 
such a UAV-based warning system should be adapted to local intersection data which can 
be retrieved from videos of local intersection traffc. In addition, as depicted by Figure 12, 
the location of a vehicle plays a key role in identifying its risk, which aligns with our 
fnding in the section above that a critical region exists at an intersection. The critical region 
may be a result of improper intersection design including inadequate sight distance and 
inappropriate traffc light phase and visibility. Recognition of regions of high risk is critical 
in safety management; however, identifying these regions could be a challenging task. 
The results of this analysis can serve as a basis for addressing this task. 

5. Concluding Remarks 

This study presents a methodology to assess traffc safety at intersections utilizing UAV 
video. The methodology explores the potential crashes between each pair of road users 
by extracting their trajectories from video images and calculating their time-to-collision 
values. To develop the trajectories of all detected road users effciently and accurately, 
the study used a deep-learning-based multi-object tracking algorithm. The trajectory data 
were re-scaled for the risk assessment. Then, a method was suggested to compute the 
crash risk between pairs of road users by calculating the time-to-collision between them. 
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The paper shows how the data provided by the UAV (including road user composition, their 
speed distributions, and TCC values) can help road safety managers to identify conficts 
and other problem areas, develop targeted countermeasures, and measure the general 
performance of intersections and other road facilities. Based on the TTC value, “risky” road 
users whose smallest TTC is less than a threshold (2.5 s in this paper) are identifed, and a 
macroscopic risk profle can be established and presented to the road agency that manages 
the intersection. An individual road user can acquire its own microscopic risk profle from 
the UAV so that it can make its safe and informed movement decisions accordingly. In the 
case study, we demonstrated how our framework could assist intersection management in 
the current era of human driving, and more importantly, in the future era of autonomous 
driving. The results showed that by investigating consecutive macroscopic risk profles, 
the spatial-temporal pattern of risk profles can be observed. The results of this study 
suggest that it is possible to use UAV-captured videos to identify critical zones where 
potential collisions happen most frequently, and to identify the riskiest road user categories. 
Urban planners and intersection managers may fnd these results useful in their efforts 
to improve traffc control, design confguration, and ultimately, safety at intersections. In 
addition, the paper deployed a Random Forest model to predict the safety condition of 
a vehicle by utilizing historical risk profles, and the results suggest that the travel speed 
is the most critical factor of a vehicle’s future safety condition. The speed of the vehicle’s 
neighbor was also found to be infuential. With the proposed model, traffc engineers 
can be placed in a better position to propose effcient countermeasures to enhance road 
safety at intersections. Moreover, the proposed model can provide CAVs information 
that is helpful for making informed driving decisions and make data available for traffc 
engineers that may be considering intersection improvements from design or operating 
policy perspectives. 

There are a number of limitations of this study, which are indicative of possible future 
work improvements. First, the VisDrone dataset does not provide the geometry and 
coordinates of the road infrastructure; therefore, in this study, we did not consider the 
impact of road geometry on the collision risk. For example, where a vehicle approaches 
the intersection via a misaligned road segment, the time-to-collision can be infuenced by 
such anomalous geometry of the roadway. Ideally, the TTC calculation should refect such 
anomaly. In future studies, this limitation may be addressed by the use of datasets that 
include more detailed information (such as lane directions, skew angles, and geometry) 
that captures any irregularities associated with the roadway infrastructure. Secondly, 
the current research work uses the VisDrone dataset, which is not only related to a rather 
limited range of roadway geometric contexts (that is, intersections only) but also involves a 
narrow range of tilt angles and traffc conditions. Therefore, future work could address 
geometric contexts (roundabouts, straight or curved highway segments, and so on), and a 
wide range of site perspective views (i.e., camera tilt angles) and traffc conditions. 
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